Find multi-tissue eQTL Metasoft
results.
This service returns multi-tissue eQTL Metasoft results for a given gene and variant in a specified dataset.
A Versioned GENCODE ID must be provided.
For each tissue, the results include: m-value (mValue), normalized effect size (nes), p-value (pValue), and standard error (se).
The m-value is the posterior probability that an eQTL effect exists in each tissue tested in the cross-tissue meta-analysis (Han and Eskin, PLoS Genetics 8(3): e1002555, 2012).
The normalized effect size is the slope of the linear regression of normalized expression data versus the three genotype categories using single-tissue eQTL analysis, representing eQTL effect size.
The p-value is from a t-test that compares observed NES from single-tissue eQTL analysis to a null NES of 0.
By default, the service queries the latest GTEx release. The retrieved data is split into pages with items_per_page
entries per page
Usage
get_multi_tissue_eqtls(
gencodeIds,
variantId = NULL,
datasetId = "gtex_v8",
page = 0,
itemsPerPage = 250
)
Arguments
- gencodeIds
A character vector of Versioned GENCODE IDs, e.g. c("ENSG00000132693.12", "ENSG00000203782.5").
- variantId
String. A gtex variant ID.
- datasetId
String. Unique identifier of a dataset. Usually includes a data source and data release. Options: "gtex_v8", "gtex_snrnaseq_pilot".
- page
Integer (default = 0).
- itemsPerPage
Integer (default = 250).
See also
Other Static Association Endpoints:
get_eqtl_genes()
,
get_fine_mapping()
,
get_independent_eqtl()
,
get_significant_single_tissue_eqtls()
,
get_significant_single_tissue_eqtls_by_location()
,
get_significant_single_tissue_ieqtls()
,
get_significant_single_tissue_isqtls()
,
get_significant_single_tissue_sqtls()
,
get_sqtl_genes()
Examples
# \dontrun{
# search by gene
get_multi_tissue_eqtls(gencodeId = c("ENSG00000132693.12",
"ENSG00000203782.5"))
#>
#> ── Paging info ─────────────────────────────────────────────────────────────────
#> • numberOfPages = 1
#> • page = 0
#> • maxItemsPerPage = 250
#> • totalNumberOfItems = 132
#> # A tibble: 6,468 × 5
#> gencodeId datasetId metaP variantId tissues
#> <chr> <chr> <dbl> <chr> <named list>
#> 1 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 2 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 3 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 4 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 5 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 6 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 7 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 8 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 9 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> 10 ENSG00000203782.5 gtex_v8 0.00177 chr1_152346526_G_T_b38 <named list [4]>
#> # ℹ 6,458 more rows
# }