Retrieve eGenes (eQTL Genes).
This service returns eGenes (eQTL Genes) from the specified dataset.
eGenes are genes that have at least one significant cis-eQTL acting upon them.
Results may be filtered by tissue. By default, the service queries the latest GTEx release.
For each eGene, the results include the allelic fold change (log2AllelicFoldChange), p-value (pValue), p-value threshold (pValueThreshold), empirical p-value (empiricalPValue), and q-value (qValue).
The log2AllelicFoldChange is the allelic fold change (in log2 scale) of the most significant eQTL.
The pValue is the nominal p-value of the most significant eQTL.
The pValueThreshold is the p-value threshold used to determine whether a cis-eQTL for this gene is significant. For more details see https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods.
The empiricalPValue is the beta distribution-adjusted empirical p-value from FastQTL.
The qValues were calculated based on the empirical p-values. A false discovery rate (FDR) threshold of <= 0.05 was applied to identify genes with a significant eQTL.
Arguments
- tissueSiteDetailIds
Character vector of IDs for tissues of interest. Can be GTEx specific IDs (e.g. "Whole_Blood"; use
get_tissue_site_detail()
to see valid values) or Ontology IDs.- datasetId
String. Unique identifier of a dataset. Usually includes a data source and data release. Options: "gtex_v8", "gtex_snrnaseq_pilot".
- page
Integer (default = 0).
- itemsPerPage
Integer (default = 250).
See also
Other Static Association Endpoints:
get_fine_mapping()
,
get_independent_eqtl()
,
get_multi_tissue_eqtls()
,
get_significant_single_tissue_eqtls()
,
get_significant_single_tissue_eqtls_by_location()
,
get_significant_single_tissue_ieqtls()
,
get_significant_single_tissue_isqtls()
,
get_significant_single_tissue_sqtls()
,
get_sqtl_genes()
Examples
# \dontrun{
get_eqtl_genes(c("Whole_Blood", "Artery_Aorta"))
#> Warning: ! Total number of items (24853) exceeds maximum page size (250).
#> ℹ Try increasing `itemsPerPage`.
#>
#> ── Paging info ─────────────────────────────────────────────────────────────────
#> • numberOfPages = 100
#> • page = 0
#> • maxItemsPerPage = 250
#> • totalNumberOfItems = 24853
#> # A tibble: 250 × 10
#> tissueSiteDetailId ontologyId datasetId empiricalPValue gencodeId geneSymbol
#> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Whole_Blood UBERON:001… gtex_v8 1.05e- 9 ENSG0000… WASH7P
#> 2 Whole_Blood UBERON:001… gtex_v8 1.06e-25 ENSG0000… RP11-34P1…
#> 3 Whole_Blood UBERON:001… gtex_v8 6.31e- 2 ENSG0000… CICP27
#> 4 Whole_Blood UBERON:001… gtex_v8 8.71e- 9 ENSG0000… RP11-34P1…
#> 5 Whole_Blood UBERON:001… gtex_v8 6.01e-20 ENSG0000… RP11-34P1…
#> 6 Whole_Blood UBERON:001… gtex_v8 6.96e- 9 ENSG0000… RP11-34P1…
#> 7 Whole_Blood UBERON:001… gtex_v8 3.10e- 4 ENSG0000… RP11-34P1…
#> 8 Whole_Blood UBERON:001… gtex_v8 1.92e- 3 ENSG0000… ABC7-4304…
#> 9 Whole_Blood UBERON:001… gtex_v8 1.58e- 3 ENSG0000… RP11-34P1…
#> 10 Whole_Blood UBERON:001… gtex_v8 7.82e- 2 ENSG0000… AP006222.2
#> # ℹ 240 more rows
#> # ℹ 4 more variables: log2AllelicFoldChange <dbl>, pValue <dbl>,
#> # pValueThreshold <dbl>, qValue <dbl>
# }