Returns a data frame including descriptions for the codes of interest
lookup_codes(
codes,
code_type,
all_lkps_maps = NULL,
preferred_description_only = TRUE,
standardise_output = TRUE,
unrecognised_codes = "error",
col_filters = default_col_filters(),
.return_unrecognised_codes = FALSE
)
character. Vector of codes to lookup
character. The type of clinical code system to be searched. Must be one obnf, dmd, icd9, icd10, read2, read2_drugs, read3, opcs4, data_coding_3, data_coding_4, data_coding_5, data_coding_6, sct, or phecode)`.
Either a named list of lookup and mapping tables (either
data frames or tbl_dbi
objects), or the path to a SQLite database
containing these tables (see also build_all_lkps_maps()
and
all_lkps_maps_to_db()
). If NULL
, will attempt to connect to an SQLite
database named 'all_lkps_maps.db' in the current working directory, or to a
a SQLite database specified by an environmental variable named
'ALL_LKPS_MAPS_DB' (see
here
for how to set environment variables using a .Renviron
file). The latter
method will be used in preference.
bool. Return only preferred descriptions
for clinical codes with synonyms. Default value is TRUE
.
bool. If TRUE
(default), outputs a data
frame with columns named 'code', 'description' and 'code_type'. Otherwise
returns a data frame with all columns for the relevant lookup sheet from
(UK Biobank
resource 592).
Either 'error' (default) or 'warning'. If any input
codes
are unrecognised, then either an error or warning will be raised.
A named list where each name in the list refers to the
name of a lookup or mapping table. Each item is also a named list, where
the names refer to column names in the corresponding table, and the items
are vectors of values to filter for. For example, list(my_lookup_table = list(colA = c("A", "B"))
will result in my_lookup_table
being filtered
for rows where colA
is either 'A' or 'B'. Uses default_col_filters()
by
default. Set to NULL
to remove all filters.
If TRUE
, return a vector of unrecognised
codes only.
data frame
Other Clinical code lookups and mappings:
codes_starting_with()
,
default_col_filters()
,
get_mapping_df()
,
map_codes()
,
reformat_icd10_codes()
# build dummy all_lkps_maps
all_lkps_maps_dummy <- build_all_lkps_maps_dummy()
# look up ICD10 codes
lookup_codes(
codes = c("E10", "E11"),
code_type = "icd10",
all_lkps_maps = all_lkps_maps_dummy
)
#> # A tibble: 2 × 3
#> code description code_type
#> <chr> <chr> <chr>
#> 1 E10 Type 1 diabetes mellitus icd10
#> 2 E11 Type 2 diabetes mellitus icd10