This is case sensitive (important for read codes especially).
codes_starting_with(
codes,
code_type,
all_lkps_maps = NULL,
codes_only = FALSE,
preferred_description_only = TRUE,
standardise_output = TRUE,
col_filters = default_col_filters()
)
character. A vector of code strings to search for matching codes.
character. The type of clinical code system to be searched. Must be one obnf, dmd, icd9, icd10, read2, read2_drugs, read3, opcs4, data_coding_3, data_coding_4, data_coding_5, data_coding_6, sct, or phecode)`.
Either a named list of lookup and mapping tables (either
data frames or tbl_dbi
objects), or the path to a SQLite database
containing these tables (see also build_all_lkps_maps()
and
all_lkps_maps_to_db()
). If NULL
, will attempt to connect to an SQLite
database named 'all_lkps_maps.db' in the current working directory, or to a
a SQLite database specified by an environmental variable named
'ALL_LKPS_MAPS_DB' (see
here
for how to set environment variables using a .Renviron
file). The latter
method will be used in preference.
bool. If TRUE
, return a character vector of
unique codes. If FALSE
(default), return a data frame of all
results including code descriptions (useful for manual validation).
bool. Return only preferred descriptions
for clinical codes with synonyms. Default value is TRUE
.
bool. If TRUE
(default), outputs a data
frame with columns named 'code', 'description' and 'code_type'. Otherwise
returns a data frame with all columns for the relevant lookup sheet from
(UK Biobank
resource 592).
A named list where each name in the list refers to the
name of a lookup or mapping table. Each item is also a named list, where
the names refer to column names in the corresponding table, and the items
are vectors of values to filter for. For example, list(my_lookup_table = list(colA = c("A", "B"))
will result in my_lookup_table
being filtered
for rows where colA
is either 'A' or 'B'. Uses default_col_filters()
by
default. Set to NULL
to remove all filters.
Other Clinical code lookups and mappings:
default_col_filters()
,
get_mapping_df()
,
lookup_codes()
,
map_codes()
,
reformat_icd10_codes()
# build dummy all_lkps_maps
all_lkps_maps_dummy <- build_all_lkps_maps_dummy()
# lookup codes
lookup_codes(
codes = c("E10", "E11"),
code_type = "icd10",
all_lkps_maps = all_lkps_maps_dummy
)
#> # A tibble: 2 × 3
#> code description code_type
#> <chr> <chr> <chr>
#> 1 E10 Type 1 diabetes mellitus icd10
#> 2 E11 Type 2 diabetes mellitus icd10